Skip to content

Building APIs with FastAPI vs Django: A Comprehensive Comparison

Published: at 03:30 PMSuggest Changes

When building APIs with Python, two frameworks stand out as popular choices: FastAPI and Django (specifically Django REST Framework). Both are powerful, well-documented, and have strong community support, but they serve different needs and have distinct philosophies. This comprehensive comparison will help you choose the right framework for your next API project.

Table of Contents

Open Table of Contents

Overview

FastAPI

FastAPI is a modern, high-performance web framework designed specifically for building APIs. Created by Sebastián Ramirez in 2018, it leverages Python type hints and is built on Starlette and Pydantic, making it incredibly fast and developer-friendly.

Django + Django REST Framework

Django is a mature, “batteries-included” web framework that has been around since 2005. When combined with Django REST Framework (DRF), it becomes a powerful tool for building robust APIs with extensive built-in features.

Performance Comparison

FastAPI Performance

# FastAPI example - High performance
from fastapi import FastAPI
import asyncio

app = FastAPI()

@app.get("/async-data")
async def get_async_data():
    # Native async support
    await asyncio.sleep(0.1)
    return {"message": "Fast async response"}

@app.get("/users/{user_id}")
async def get_user(user_id: int):
    return {"user_id": user_id, "name": "John Doe"}

Performance Characteristics:

Django Performance

# Django REST Framework example
from rest_framework.decorators import api_view
from rest_framework.response import Response
from django.contrib.auth.models import User

@api_view(['GET'])
def get_user(request, user_id):
    try:
        user = User.objects.get(id=user_id)
        return Response({
            'user_id': user.id,
            'name': user.get_full_name()
        })
    except User.DoesNotExist:
        return Response({'error': 'User not found'}, status=404)

Performance Characteristics:

Development Experience

FastAPI Developer Experience

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Optional

app = FastAPI(title="User API", version="1.0.0")

class User(BaseModel):
    id: int
    name: str
    email: str
    age: Optional[int] = None

class UserCreate(BaseModel):
    name: str
    email: str
    age: Optional[int] = None

@app.post("/users/", response_model=User)
async def create_user(user: UserCreate):
    # Automatic validation through Pydantic
    new_user = User(id=1, **user.dict())
    return new_user

@app.get("/users/", response_model=List[User])
async def list_users():
    return [
        User(id=1, name="John Doe", email="john@example.com", age=30)
    ]

Advantages:

Django Developer Experience

# models.py
from django.db import models
from django.contrib.auth.models import AbstractUser

class User(models.Model):
    name = models.CharField(max_length=100)
    email = models.EmailField(unique=True)
    age = models.IntegerField(null=True, blank=True)
    created_at = models.DateTimeField(auto_now_add=True)

# serializers.py
from rest_framework import serializers

class UserSerializer(serializers.ModelSerializer):
    class Meta:
        model = User
        fields = ['id', 'name', 'email', 'age', 'created_at']

# views.py
from rest_framework.viewsets import ModelViewSet

class UserViewSet(ModelViewSet):
    queryset = User.objects.all()
    serializer_class = UserSerializer

Advantages:

Feature Comparison

FeatureFastAPIDjango + DRF
DocumentationAuto-generated OpenAPI/SwaggerManual or third-party tools
Data ValidationPydantic (automatic)DRF Serializers (manual)
AuthenticationManual or third-partyBuilt-in (sessions, tokens, JWT)
Database ORMNo built-in ORMDjango ORM (excellent)
Admin InterfaceNoneBuilt-in admin panel
File UploadsManual handlingBuilt-in support
PermissionsCustom implementationComprehensive built-in system
CachingManual or third-partyBuilt-in cache framework
TestingManual setupComprehensive test framework
MigrationsNo built-in supportAutomatic database migrations

Real-World Examples

FastAPI: Microservice Architecture

from fastapi import FastAPI, Depends, HTTPException
from sqlalchemy.orm import Session
import databases
import sqlalchemy

# Database setup
DATABASE_URL = "postgresql://user:password@localhost/dbname"
database = databases.Database(DATABASE_URL)

app = FastAPI()

@app.on_event("startup")
async def startup():
    await database.connect()

@app.on_event("shutdown")
async def shutdown():
    await database.disconnect()

# Lightweight service for user authentication
@app.post("/auth/login")
async def login(credentials: LoginCredentials):
    # Fast authentication logic
    token = await authenticate_user(credentials)
    return {"access_token": token, "token_type": "bearer"}

# High-performance data endpoint
@app.get("/analytics/users")
async def get_user_analytics():
    query = "SELECT COUNT(*) as total_users FROM users"
    result = await database.fetch_one(query)
    return {"total_users": result["total_users"]}
# models.py
from django.db import models
from django.contrib.auth.models import AbstractUser

class CustomUser(AbstractUser):
    profile_image = models.ImageField(upload_to='profiles/')
    bio = models.TextField(max_length=500, blank=True)
    birth_date = models.DateField(null=True, blank=True)

class Post(models.Model):
    author = models.ForeignKey(CustomUser, on_delete=models.CASCADE)
    title = models.CharField(max_length=200)
    content = models.TextField()
    created_at = models.DateTimeField(auto_now_add=True)
    tags = models.ManyToManyField('Tag', blank=True)

class Tag(models.Model):
    name = models.CharField(max_length=50, unique=True)

# admin.py
from django.contrib import admin

@admin.register(Post)
class PostAdmin(admin.ModelAdmin):
    list_display = ['title', 'author', 'created_at']
    list_filter = ['created_at', 'tags']
    search_fields = ['title', 'content']

# Complex business logic with built-in features
class PostViewSet(ModelViewSet):
    queryset = Post.objects.all()
    serializer_class = PostSerializer
    permission_classes = [IsAuthenticatedOrReadOnly]
    filter_backends = [DjangoFilterBackend, SearchFilter]
    filterset_fields = ['author', 'tags']
    search_fields = ['title', 'content']

When to Choose FastAPI

Ideal Use Cases:

Example Scenarios:

# IoT data collection service
@app.post("/sensor-data")
async def collect_sensor_data(data: List[SensorReading]):
    # High-throughput data ingestion
    await process_sensor_data_async(data)
    return {"status": "processed", "count": len(data)}

# Machine learning model serving
@app.post("/predict")
async def predict(features: MLFeatures):
    prediction = await model.predict_async(features.dict())
    return {"prediction": prediction, "confidence": 0.95}

When to Choose Django

Ideal Use Cases:

Example Scenarios:

# E-commerce platform
class Product(models.Model):
    name = models.CharField(max_length=200)
    price = models.DecimalField(max_digits=10, decimal_places=2)
    inventory = models.IntegerField()

    def apply_discount(self, percentage):
        # Complex business logic
        return self.price * (1 - percentage / 100)

# Content management system
class Article(models.Model):
    title = models.CharField(max_length=200)
    content = models.TextField()
    author = models.ForeignKey(User, on_delete=models.CASCADE)
    published = models.BooleanField(default=False)

    class Meta:
        permissions = [
            ("can_publish", "Can publish articles"),
        ]

Migration Considerations

From Django to FastAPI

# Gradual migration approach
# Keep Django for admin and complex business logic
# Add FastAPI for new high-performance endpoints

# FastAPI service
from fastapi import FastAPI
from django.core.wsgi import get_wsgi_application
from fastapi.middleware.wsgi import WSGIMiddleware

fastapi_app = FastAPI()

@fastapi_app.get("/api/v2/fast-endpoint")
async def new_fast_endpoint():
    return {"message": "New FastAPI endpoint"}

# Mount Django app for existing functionality
django_app = get_wsgi_application()
fastapi_app.mount("/admin", WSGIMiddleware(django_app))

From FastAPI to Django

# When you need more built-in features
# Gradual migration: Add Django ORM while keeping FastAPI routes

from django.conf import settings
import django
from django.apps import apps

# Configure Django ORM in FastAPI
settings.configure(
    DATABASES={
        'default': {
            'ENGINE': 'django.db.backends.postgresql',
            'NAME': 'your_db',
        }
    },
    INSTALLED_APPS=['your_app'],
)
django.setup()

# Use Django models in FastAPI
from your_app.models import User as DjangoUser

@app.get("/users/{user_id}")
async def get_user(user_id: int):
    user = await sync_to_async(DjangoUser.objects.get)(id=user_id)
    return {"id": user.id, "name": user.name}

Performance Benchmarks

Simple API Endpoint Comparison

# FastAPI (requests/second)
GET /users/1: ~15,000 req/s

# Django + DRF (requests/second)
GET /users/1: ~5,000 req/s

# With database queries
FastAPI + SQLAlchemy: ~8,000 req/s
Django + ORM: ~4,000 req/s

Async Operations

# FastAPI excels in async scenarios
@app.get("/concurrent-operations")
async def concurrent_ops():
    tasks = [
        fetch_user_data(user_id) for user_id in range(100)
    ]
    results = await asyncio.gather(*tasks)
    return {"processed": len(results)}

# Django async support (Django 4.1+)
from django.http import JsonResponse
from asgiref.sync import sync_to_async

async def async_view(request):
    users = await sync_to_async(list)(User.objects.all())
    return JsonResponse({"count": len(users)})

Decision Matrix

CriteriaFastAPIDjango + DRF
API Performance⭐⭐⭐⭐⭐⭐⭐⭐
Development Speed⭐⭐⭐⭐⭐⭐⭐⭐⭐
Learning Curve⭐⭐⭐⭐⭐⭐⭐
Documentation⭐⭐⭐⭐⭐⭐⭐⭐⭐
Built-in Features⭐⭐⭐⭐⭐⭐⭐
Type Safety⭐⭐⭐⭐⭐⭐⭐⭐
Community/Ecosystem⭐⭐⭐⭐⭐⭐⭐⭐⭐
Async Support⭐⭐⭐⭐⭐⭐⭐⭐
Admin Interface⭐⭐⭐⭐⭐
Testing Tools⭐⭐⭐⭐⭐⭐⭐⭐

Conclusion

Choose FastAPI when:

Choose Django + DRF when:

Both frameworks are excellent choices, and the decision often comes down to your specific requirements, team expertise, and project constraints. Many successful projects use a hybrid approach, leveraging Django’s admin and ORM capabilities alongside FastAPI’s performance for critical API endpoints.

The Python ecosystem is rich enough to support both approaches, and you can’t go wrong with either choice when applied to the right use case.


Next Post
Machine Learning with Scikit-learn: A Comprehensive Guide